Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Oral Health ; 3: 974644, 2022.
Article in English | MEDLINE | ID: covidwho-20231982

ABSTRACT

Various dental, maxillofacial, and orthopedic surgical procedures (DMOSP) have been known to produce bioaerosols, that can lead to the transmission of various infectious diseases. Hence, a systematic review (SR) aimed at generating evidence of aerosols generating DMOSP that can result in the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), further investigating their infectivity and assessing the role of enhanced personal protective equipment (PPE) an essential to preventing the spreading of SARS-CoV-2 during aerosol-generating procedures (AGPs). This SR was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (PRISMA) guidelines based on a well-designed Population, Intervention, Comparison, Outcomes and Study (PICOS) framework, and various databases were searched to retrieve the studies which assessed potential aerosolization during DMOSP. This SR included 80 studies (59 dental and 21 orthopedic) with 7 SR, 47 humans, 5 cadaveric, 16 experimental, and 5 animal studies that confirmed the generation of small-sized < 5 µm particles in DMOSP. One study confirmed that HIV could be transmitted by aerosolized blood generated by an electric saw and bur. There is sufficient evidence that DMOSP generates an ample amount of bioaerosols, but the infectivity of these bioaerosols to transmit diseases like SARS-CoV-2 generates very weak evidence but still, this should be considered. Confirmation through isolation and culture of viable virus in the clinical environment should be pursued. An evidence provided by the current review was gathered by extrapolation from available experimental and empirical evidence not based on SARS-CoV-2. The results of the present review, therefore, should be interpreted with great caution.

2.
Diagn Microbiol Infect Dis ; 106(4): 115991, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2328398

ABSTRACT

In the context of the current SARS-CoV-2 pandemic, reliable and cost-efficient screening and testing strategies are crucial to prevent disease transmission and reduce socioeconomic losses. To assess the efficiency of a rapid antigen test (RAT)-based SARS-CoV-2 contact-tracing and screening regime, we conducted a retrospective analysis of RAT and polymerase chain reaction (PCR) test data over a 1-year period, assessed test characteristics and estimated cost-effectiveness. The RAT had a sensitivity of 70.2% overall and 89.3% for people with a high risk of infectivity. We estimated inpatient treatment and quarantined healthcare worker costs of over € 5860.83, whereas the cost of identifying one SARS-CoV-2 positive person by RAT for our patient cohort was € 1210.75. In contrast, the estimated respective PCR cost was € 5043.32. Therefore, a RAT-based contract tracing and screening regime may be an efficient and cost-effective way to contribute to the early identification and prevention of SARS-CoV-2 transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Contact Tracing , Cost-Effectiveness Analysis , Retrospective Studies , Hospitals
3.
Antimicrob Resist Infect Control ; 11(1): 140, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2119222

ABSTRACT

BACKGROUND: The first detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Germany was reported in early February 2020. In addition, extensive control measures on the coronavirus disease 2019 (COVID-19) pandemic have been placed in Germany since March 2020. These include contact and travel restrictions, distance rules, mandatory wearing of face masks and respirators, cancellation of mass events, closures of day-care centers, schools, restaurants and shops, isolation measures, and intensified infection control measures in medical and long-term care facilities. Changes in demand or access to health care services and intensified control measures can lead to changes in transmission dynamics and imply effects on the overall occurrence of infectious diseases in hospitals. METHODS: To analyze the impact of infection control measures implemented in public on infectious diseases in hospitals, surveillance data from Marburg University Hospital were analyzed retrospectively. The analysis was conducted from January 2019 to June 2021, referred to hospital occupancy and mobility data in the county of Marburg-Biedenkopf, and correlated to control measures in hospitals and the general population. RESULTS: The COVID-19 pandemic and associated measures immediately impacted the occurrence of infectious diseases at the Marburg University Hospital. Significant changes were detected for virus-associated respiratory and gastrointestinal diseases. The massive drop in norovirus infections was significantly affected by the onset of the pandemic (P = 0.028). Similar effects were observed for rotavirus (up to - 89%), respiratory syncytial virus (up to - 98%), and adenovirus infections (up to - 90%). The decrease in gastrointestinal and respiratory virus detection rates was significantly affected by the decline in mobility (P < 0.05). Of note, since April 2020, there have been no detected influenza cases. Furthermore, Clostridioides difficile-related infections declined after late 2020 (- 44%). In contrast, no significant changes were detected in the prevalence of susceptible and drug-resistant bacterial pathogens. In particular, the detection rates of methicillin-resistant Staphylococcus aureus isolates or multidrug resistant (MDR) and extended drug resistant (XDR) bacteria remained constant, although the consumption of hand disinfectants and protective equipment increased. CONCLUSIONS: The COVID-19 pandemic and associated public health measures had a significant impact on infectious diseases and the detection of pathogens at the Marburg University Hospital. Significant changes were observed for community transmissible infections, while no such effects on pathogens primarily associated with nosocomial transmission could be detected.


Subject(s)
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Humans , Pandemics/prevention & control , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Public Health , Retrospective Studies , Infection Control , Hospitals
4.
PLoS One ; 17(11): e0268863, 2022.
Article in English | MEDLINE | ID: covidwho-2112689

ABSTRACT

BACKGROUND: The reprocessing of daily used medical devices is often inadequate, making them a potential source of infection. In addition, there are usually no consistent and technically standardized procedures available for this purpose. Hence, the aim of this study is to analyze the bacterial contamination and the effectiveness of Ultraviolet light-based (UV light-based) reprocessing of daily used medical devices. MATERIAL AND METHODS: Six different everyday medical devices (20 each; stethoscopes, tourniquets, bandage scissors, reflex hammers, tuning forks, and nystagmus glasses) were tested for bacterial contamination. All medical devices were then exposed to UV-C light for 25 seconds. Medical devices with a smooth surface were pre-cleaned with a water-based wipe. Contact samples were taken before and after reprocessing. RESULTS: Immediately after clinical use, 104 of 120 contact samples showed an average bacterial contamination of 44.8±64.3 colony forming units (CFU) (0-300 CFU), also including potentially pathogenic bacteria. Two further culture media were completely overgrown with potentially pathogenic bacteria. The stethoscopes were found to have the highest average contamination of 90±91.6 CFU. After reprocessing, 118 of 120 samples were sterile, resulting in an average residual contamination of 0.02±0.1 CFU in two samples, whereby only bacteria of the ordinary skin flora were found. CONCLUSION: The present study shows the potentially clinically relevant bacterial contamination of everyday used medical devices. The reprocessing method tested here using UV light appears to be a suitable method for disinfection, especially for objects that up to now have been difficult to disinfect or cannot be disinfected in a standardized manner.


Subject(s)
Equipment Contamination , Ultraviolet Rays , Equipment Contamination/prevention & control , Disinfection/methods , Bacteria , Drug Contamination
5.
Frontiers in oral health ; 3, 2022.
Article in English | EuropePMC | ID: covidwho-1989263

ABSTRACT

Various dental, maxillofacial, and orthopedic surgical procedures (DMOSP) have been known to produce bioaerosols, that can lead to the transmission of various infectious diseases. Hence, a systematic review (SR) aimed at generating evidence of aerosols generating DMOSP that can result in the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), further investigating their infectivity and assessing the role of enhanced personal protective equipment (PPE) an essential to preventing the spreading of SARS-CoV-2 during aerosol-generating procedures (AGPs). This SR was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (PRISMA) guidelines based on a well-designed Population, Intervention, Comparison, Outcomes and Study (PICOS) framework, and various databases were searched to retrieve the studies which assessed potential aerosolization during DMOSP. This SR included 80 studies (59 dental and 21 orthopedic) with 7 SR, 47 humans, 5 cadaveric, 16 experimental, and 5 animal studies that confirmed the generation of small-sized < 5 μm particles in DMOSP. One study confirmed that HIV could be transmitted by aerosolized blood generated by an electric saw and bur. There is sufficient evidence that DMOSP generates an ample amount of bioaerosols, but the infectivity of these bioaerosols to transmit diseases like SARS-CoV-2 generates very weak evidence but still, this should be considered. Confirmation through isolation and culture of viable virus in the clinical environment should be pursued. An evidence provided by the current review was gathered by extrapolation from available experimental and empirical evidence not based on SARS-CoV-2. The results of the present review, therefore, should be interpreted with great caution.

6.
Int J Environ Res Public Health ; 19(6)2022 03 10.
Article in English | MEDLINE | ID: covidwho-1742427

ABSTRACT

BACKGROUND: The reprocessing of medical devices has become more complex due to increasing hygiene requirements. Previous studies showed satisfactory bactericidal disinfection effects of UV-C light in rigid and flexible endoscopes. Especially in the context of the current COVID-19 pandemic, virucidal properties are of high importance. In the present study, the virucidal efficacy of UV-C light surface disinfection was analyzed. METHODS: MS-2 bacteriophages were applied to the test samples and irradiated by UV-C light using the UV Smart D25 device; unirradiated test samples were used as controls. A dilution series of the samples was mixed with 1&nbsp;×&nbsp;108&nbsp;Escherichia coli and assayed. RESULTS: 8.6 × 1012 pfu could be harvested from the unprocessed test samples. In the control group without UV-C exposure, a remaining contamination of 1.2 × 1012 pfu was detected, resulting in a procedural baseline reduction rate with a LOG10 reduction factor of 0.72. The LOG10 reduction factor was found to be 3.0 after 25 s of UV-C light exposure. After 50 and 75 s of UV-C radiation LOG10 reduction factors 4.2 and 5.9, respectively, were found, with all reductions being statistically significantly different to baseline. CONCLUSIONS: The tested UV system seems to provide a significant virucidal effect after a relatively short irradiation time.


Subject(s)
Bacteriophages , COVID-19 , COVID-19/prevention & control , Disinfection/methods , Humans , Pandemics , Ultraviolet Rays
7.
Antimicrob Resist Infect Control ; 10(1): 102, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1295486

ABSTRACT

INTRODUCTION: In late 2019, a novel coronavirus was detected in China. Supported by its respiratory transmissibility, even by people infected without symptomatic disease, this coronavirus soon began to rapidly spread worldwide. BACKGROUND: Many countries have implemented different infection control and containment strategies due to ongoing community transmission. In this context, contact tracing as well as adequate testing and consequent quarantining of high-risk contacts play leading roles in containing the virus by interrupting infection chains. This approach is especially important in the hospital setting where contacts often cannot be avoided and physical distance is usually not possible. Furthermore, health care workers (HCWs) usually have contact with a variety of vulnerable people, making it essential to identify infections among hospital employees as soon as possible to interrupt the rapid spread of SARS-CoV-2 in the facility. Several electronic tools for contact tracing, such as specific software or mobile phone apps, are available for the public health sector. In contrast, contact tracing in hospitals often has to be carried out without helpful electronic tools, and an enormous amount of human resources is typically required. AIM: For rapid contact tracing and effective infection control and management measures for HCWs in hospitals, adapted technical solutions are needed. METHODS: In this study, we report the development of our containment strategy to a web-based contact tracing and rapid point-of-care-testing workflow. RESULTS/CONCLUSION: Our workflow yielded efficient control of the rapidly evolving situation during the SARS-CoV-2 pandemic from May 2020 until January 2021 at a German University Hospital.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/transmission , Computer Communication Networks , Contact Tracing/methods , Infectious Disease Transmission, Patient-to-Professional , Pandemics , Point-of-Care Testing , SARS-CoV-2 , COVID-19/epidemiology , Germany/epidemiology , Hospitals, University , Humans , Infection Control/methods , Infectious Disease Transmission, Professional-to-Patient/prevention & control , Mobile Applications , Personnel, Hospital , Real-Time Polymerase Chain Reaction , Retrospective Studies , Seasons , Software , Workflow
8.
Int J Environ Res Public Health ; 18(13)2021 06 27.
Article in English | MEDLINE | ID: covidwho-1288868

ABSTRACT

Due to the SARS-CoV-2 pandemic, dental treatment performed by undergraduate students at the University of Marburg/Germany was immediately stopped in spring 2020 and stepwise reinstalled under a new hygiene concept until full recovery in winter 2020/21. Patient treatment in the student courses was evaluated based on three aspects: (1) Testing of patients with a SARS-CoV-2 Rapid Antigen (SCRA) Test applied by student assistants (SA); (2) Improved hygiene regimen, with separated treatment units, cross-ventilation, pre-operative mouth rinse and rubber dam application wherever possible; (3) Recruitment of patients: 735 patients were pre-registered for the two courses; 384 patients were treated and a total of 699 tests with the SCRA test were performed by SAs. While half of the patients treated in the course were healthy, over 40% of the patients that were pre-registered but not treated in the course revealed a disease being relevant to COVID (p < 0.001). 46 patients had concerns to visit the dental hospital due to the increase of COVID incidence levels, 14 persons refused to be tested. The presented concept was suitable to enable patient treatment in the student course during the SARS-CoV-2 pandemic.


Subject(s)
COVID-19 , Pandemics , Education, Dental , Hospitals , Humans , Pandemics/prevention & control , SARS-CoV-2
9.
PLoS One ; 16(3): e0248099, 2021.
Article in English | MEDLINE | ID: covidwho-1115311

ABSTRACT

Since the appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the question regarding the efficacy of various hygiene measures and the use of personal protective equipment (PPE) has become the focus of scientific and above all public discussion. To compare respirators, medical face masks, and cloth masks and determine if it is recommendable to wear face masks to protect the individual wearer of the mask from inhaling airborne particles, we challenged 29 different masks with aerosols and tested the pressure drop as a surrogate for breathing resistance owing to the mask material. We found that Type II medical face masks showed the lowest pressure drop (12.9±6.8 Pa/cm2) and therefore additional breathing resistance, whereas respirators such as the KN95 (32.3±7.0 Pa/cm2) and FFP2 (26.8±7.4 Pa/cm2) showed the highest pressure drops among the tested masks. The filtration efficacy of the mask material was the lowest for cloth masks (28±25%) followed by non-certified face masks (63±19%) and certified medical face masks (70±10%). The materials of the different respirators showed very high aerosol retentions (KN95 [94±4%] and FFP2 [98±1%]). For evaluating the as-worn filtration performance simulating real live conditions each mask type was also tested on a standardized dummy head. Cloth masks and non-EN-certified face masks had the worst as-worn filtration efficacies among the tested masks, filtering less than 20% of the test aerosol. Remarkably, certified type II medical face masks showed similar (p>0.5) as-worn filtration results (47±20%) than KN95 masks (41±4%) and FFP2 masks (65±27%), despite having a lower pressure drop. Face shields did not show any significant retention function against aerosols in our experiment. Our results indicate that it seems recommendable to wear face masks for providing base protection and risk reduction against inhaling airborne particles, in low-risk situations. In our study, especially EN 14683 type II certified medical face masks showed protective effectiveness against aerosols accompanied by minimal additional breathing resistance. FFP2 Respirators, on the other hand, could be useful in high-risk situations but require greater breathing effort and therefore physical stress for users.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious/prevention & control , Masks/trends , Aerosols , COVID-19/epidemiology , Filtration , Humans , Models, Statistical , Occupational Exposure/prevention & control , Personal Protective Equipment/trends , Respiratory Protective Devices/virology , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL